Detailed Course Outline
Introduction to IBM SPSS Modeler
- • Introduction to data science
 - • Describe the CRISP-DM methodology
 - • Introduction to IBM SPSS Modeler
 - • Build models and apply them to new data
 
Collect initial data
- • Describe field storage
 - • Describe field measurement level
 - • Import from various data formats
 - • Export to various data formats
 
Understand the data
- • Audit the data
 - • Check for invalid values
 - • Take action for invalid values
 - • Define blanks
 
Set the unit of analysis
- • Remove duplicates
 - • Aggregate data
 - • Transform nominal fields into flags
 - • Restructure data
 
Integrate data
- • Append datasets
 - • Merge datasets
 - • Sample records
 
Transform fields
- • Use the Control Language for Expression Manipulation
 - • Derive fields
 - • Reclassify fields
 - • Bin fields
 
Further field transformations
- • Use functions
 - • Replace field values
 - • Transform distributions
 
Examine relationships
- • Examine the relationship between two categorical fields
 - • Examine the relationship between a categorical and continuous field
 - • Examine the relationship between two continuous fields
 
Introduction to modeling
- • Describe modeling objectives
 - • Create supervised models
 - • Create segmentation models
 
Improve efficiency
- • Use database scalability by SQL pushback
 - • Process outliers and missing values with the Data Audit node
 - • Use the Set Globals node
 - • Use parameters
 - • Use looping and conditional execution