courseoutline_metadesc.tpl
    
        
            
            
            
        
                    
        
    
             
    
                
            Deep Learning in Theory and Practice (HU0F0S) – Details
            
            
    
            
            
                
                                    
                                                
                            Detaillierter Kursinhalt
                        
                        Module 1 A Gentle Introduction to Deep Learning  
- History of deep learning • Ethics in AI
- Overview of deep learning
- A single neuron
- What is a transfer function?
Module 2 Introduction to TensorFlow 
- Introduction to TensorFlow
- The TensorFlow architecture
- TensorFlow data
Module 3 Introduction to Keras 
- Introduction to Keras
- The Keras architecture
- Keras models
- Keras sequential vs functional API
- Keras layers
- Keras core modules
Module 4 Overfitting and Underfitting 
- Overfitting and underfitting
- How to avoid
Module 5 Activation, Loss and Optimizer Functions 
- Activation functions
- Loss functions
- Optimization functions
Module 6 Regularizing a Model & Hyperparameter Optimization 
- Why regularize?
- Regularization types
- Hyperparameters
- Optimization techniques
Module 7 Pooling and Convolutions 
- Convolutions
- Pooling in neural networks
Module 8 Big Data Deep Learning 
- The big data perspective
- The big data deep learning team and roles
- Apache Spark
- Databricks
- Determined AI
- HPE Ezmeral